Asociación entre ingesta alimentaria y perfil antropométrico y metabólico de mujeres adultas brasileñas

Autores/as

  • Ana Gabriella Pereira Alves Universidade Federal de Goiás
  • Beatriz Assis Carvalho Cruvinel Faculty of Physical Education and Dance (FEFD), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.
  • Maria Sebastiana Silva Faculty of Physical Education and Dance (FEFD), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.
  • Ana Cristina Silva Rebelo

DOI:

https://doi.org/10.51581/rccm.v23i2.267

Palabras clave:

Hemoglobina A glucada , Lipoproteinas, Circunferencia de la cintura, Consumo de alimentos, Atencion primaria de salud

Resumen

Introducción: Las alteraciones en el perfil lipídico, glucémico y hemodinámico pueden aumentar el riesgo de
enfermedades crónicas y mortalidad. Objetivo: Asociar los parámetros metabólicos, antropométricos y el
consumo de alimentos de mujeres adultas brasileñas.

Métodos: Se realizó un estudio transversal con 34 mujeres
brasileñas de 20 a 59 años. Se recogieron datos sobre el consumo de alcohol, tabaco, ejercicio, presión arterial,
antropometría y consumo de alimentos. También se evaluaron la hemoglobina glicosilada y las fracciones lipídicas.
Resultados: Se encontró una asociación positiva entre el consumo de energía y los valores de masa corporal
(ß = 0.377, p = 0.028) y la circunferencia de la cintura (ß = 0.373, p = 0.030), y entre el consumo de proteínas y
el porcentaje de grasa corporal (ß = 0.368, p = 0.032). También hubo una influencia positiva de la circunferencia
de la cintura en los valores de hemoglobina glicosilada (ß = 0.401, p = 0.019), y el HDL-c estuvo directamente
influenciado por el consumo de proteínas (ß = 0.573, p = 0.013) e inversamente por el consumo de grasas (ß =
-0.597, p = 0.010).

Conclusión: La antropometría, el perfil metabólico y el consumo de alimentos se asociaron
entre las mujeres adultas brasileñas evaluadas.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Beatriz Assis Carvalho Cruvinel, Faculty of Physical Education and Dance (FEFD), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.

Laboratory of Physiology, Nutrition and Health (LAFINS).

Maria Sebastiana Silva, Faculty of Physical Education and Dance (FEFD), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.

Laboratory of Physiology, Nutrition and Health (LAFINS).
Faculty of Physical Education and Dance (FEFD), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.

Ana Cristina Silva Rebelo

Laboratory of Physiology, Nutrition and Health (LAFINS).
Faculty of Physical Education and Dance (FEFD), Federal
University of Goiás (UFG), Goiânia, Goiás, Brazil.


Department of Morphology, Institute of Biological Sciences (ICB), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.

Citas

Pimentel IRS, Coelho BDC, Lima JC, Ribeiro FG, Sampaio FPC, Pinheiro RP, et al. Caracterização da demanda em uma Unidade de Saúde da Família. Rev Bras Med Fam Comunidade. 2011;6(20):175–81. doi: https://doi.org/10.5712/rbmfc6(20)95

Institute of Medicine. Accelerating progress in obesity prevention: solving the weight of the nation. Washington, DC: The National Academies Press; 2012. 479 p. Available from: http://www.nap.edu/catalog.php?record_id=13275

Jeon KJ, Lee O, Kim HK, Han SN. Comparison of the dietary intake and clinical characteristics of obese and normal weight adults. Nutr Res Pract. 2011;5(4):329-36. doi: 10.4162/nrp.2011.5.4.329

Upadhyay RK. Emerging risk biomarkers in cardiovascular diseases and disorders. J Lipids. 2015;2015:1-50. doi: 10.1155/2015/971453

Krzywinski M, Altman N. Multiple linear regression. Nature Methods. 2015;12(12):1103-4. doi: 10.1038/nmeth.3665

Brasil. Política Nacional de Atenção Básica. Brasília (DF): Ministério da Saúde; 2012. 114 p. Available from: http://189.28.128.100/dab/docs/publicacoes/geral/pnab.pdf

Malachias MVB, Souza WKSB, Plavnik FL, Rodrigues CIS, Brandão AA, Neves MFT, et al. 7 diretriz brasileira de hipertensão arterial. Arq Bras Cardiol. 2016;107(supl.3):1–83. Available from: http://publicacoes.cardiol.br/2014/diretrizes/2016/05_HIPERTENSAO_ARTERIAL.pdf

World Health Organization. Physical status: the use of and interpretation of anthropometry. Geneva: WHO; 1995. 463 p. Available from: http://www.who.int/childgrowth/publications/physical_status/en/

Lean M, Han T, Morrison C. Waist circumference as a measure for indicating need for weight management. BMJ. 1995;311(6998):158–61. doi: 10.1136/bmj.311.6998.158

Haun DR, Pitanga FJG, Lessa I. Razão cintura/estatura comparado a outros indicadores antropométricos de obesidade como preditor de risco coronariano elevado. Rev Assoc Med Bras. 2009;55(6):705–11. doi: https://doi.org/10.1590/S0104-42302009000600015

American Diabetes Association. Standards of medical care in diabetes - 2015. Diabetes Care. 2015; 38(suppl 1):1-93. Available from: http://care.diabetesjournals.org/content/diacare/suppl/2016/12/15/40.Supplement_1.DC1/DC_40_S1_final.pdf

Faludi A, Izar M, Saraiva J, Chacra A, Bianco H, Afiune Neto A, et al. Atualização da diretriz brasileira de dislipidemias e prevenção da aterosclerose - 2017. Arq Bras Cardiol. 2017;109(1):1–76. Available from: http://publicacoes.cardiol.br/2014/diretrizes/2017/02_DIRETRIZ_DE_DISLIPIDEMIAS.pdf

Cardoso MA, Stocco PR. Desenvolvimento de um questionário quantitativo de freqüência alimentar em imigrantes japoneses e seus descendentes residentes em São Paulo, Brasil. Cad Saúde Pública. 2000;16(1):107–14. doi: https://doi.org/10.1590/S0102-311X2000000100011

Institute of Medicine. Dietary Reference Intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. Washington, DC: The National Academies Press; 2005. 1331 p. Available from: https://www.nal.usda.gov/sites/default/files/fnic_uploads/energy_full_report.pdf

Institute of Medicine. Dietary Reference Intakes (DRIs): Estimated Average Requirements. Washington, DC: The National Academies Press; 2005. 8 p. Available from: http://www.nationalacademies.org/hmd/~/media/Files/Activity%20Files/Nutrition/DRI-Tables/5Summary%20TableTables%2014.pdf?la=en

Santos RD, Gagliardi ACM, Xavier HT, Magnoni CD, Cassani R, Lottenberg AM, et al. I diretriz sobre o consumo de gorduras e saúde cardiovascular. Arq Bras Cardiol. 2013;100(1):1–40. doi: https://doi.org/10.1590/S0066-782X2013000900001

Hill JH, Solt C, Foster MT. Obesity associated disease risk: the role of inherent differences and location of adipose depots. Horm Mol Biol Clin Investig. 2018;33(2):1-16. doi: 10.1515/hmbci-2018-0012

Huh JY, Park YJ, Ham M, Kim JB. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol Cells May. 2014;37(5):365-71. doi: 10.14348/molcells.2014.0074

Kojic Damjanov S, Djeric M, Eremic-Kojic N. Glycated hemoglobin A1c as a modern biochemical marker of glucose regulation. Med Pregl. 2014;67(9-10): 339-44. doi: 10.2298/MPNS1410339K

Kwon HW, Lee SM, Lee JW, Oh JE, Lee SW, Kim SY. Association between volume and glucose metabolism of abdominal adipose tissue in healthy population. Obes Res Clin Pract. 2017;11(5):133-43. doi: 10.1016/j.orcp.2016.12.007

Lara M, Bustos P, Amigo H, Silva C, Rona RJ. Is waist circumference a better predictor of blood pressure, insulin resistance and blood lipids than body mass index in young Chilean adults? BMC Public Health. 2012;12(638):1–7. doi: 10.1186/1471-2458-12-638

Cerhan JR, Moore SC, Jacobs EJ, Kitahara CM, Rosenberg PS, Adami H, et al. A pooled analysis of waist circumference and mortality in 650,000 adults. Mayo Clin Proc. 2014;89(3):335–45. doi: 10.1016/j.mayocp.2013.11.011

Reis Filho AD, Coelho CF, Voltarelli FA, Ferrari Junior J, Ravagnani FCP, Fett WCR, et al. Associação entre variáveis antropométricas, perfil glicêmico e lipídico em mulheres idosas. Rev Bras Geriatr e Gerontol. 2011;14(4):675–86. doi: http://dx.doi.org/10.1590/S1809-98232011000400007

Barning F, Abarin T. Assessing the causality factors in the association between (abdominal) obesity and physical activity among the Newfoundland population — A mendelian randomization analysis. Genet Epigenet. 2016;8:15–24. doi: 10.4137/GEG.S38289

Romieu I, Dossus L, Barquera S, Blottière HM, Franks PW, Gunter M, et al. Energy balance and obesity: what are the main drivers? Cancer Causes Control. 2017;28(3):247–58. doi: 10.1007/s10552-017-0869-z

Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of inactivity in chronic diseases: evolutionary insight and pathophysiological mechanisms. Physiol Rev. 2017;97(4):1351–402. doi: https://doi.org/10.1152/physrev.00019.2016

Sales CH, Fontanelli MM, Vieira DAS, Marchioni DM, Fisberg RM. Inadequate dietary intake of minerals: prevalence and association with socio-demographic and lifestyle factors. Br J Nutr. 2017;117(2):267–77. doi: https://doi.org/10.1017/S0007114516004633

Núcleo de Estudos e Pesquisa em Alimentação. Tabela brasileira de composição de alimentos (TACO). Campinas: NEPA - UNICAMP; 2011. 161 p. Available from: http://www.nepa.unicamp.br/taco/contar/taco_4_edicao_ampliada_e_revi sada.pdf?arquivo=taco_4_versao_ampliada_e_revisada.pdf

Monteiro CA, Levy RB, Claro RM, Castro IRR, Cannon G. Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. Public Health Nutr. 2010;14(1):5–13. doi: 10.1017/S1368980012005009

Murphy K, Crichton G, Dyer K, Coates A, Pettman T, Milte C, et al. Dairy foods and dairy protein consumption is inversely related to markers of adiposity in obese men and women. Nutrients. 2013;5(11):4665–84. doi: https://doi.org/10.3390/nu5114665

Bowen L, Taylor AE, Sullivan R, Ebrahim S, Kinra S, Krishna KR, et al. Associations between diet, physical activity and body fat distribution: a cross sectional study in an Indian population. BMC Public Health. 2015;15(281):1–12. doi: 10.1186/s12889-015-1550-7

Celis-Morales C, Livingstone KM, Affleck A, Navas-Carretero S, San-Cristobal R, Martinez JA, et al. Correlates of overall and central obesity in adults from seven European countries: findings from the Food4Me Study. Eur J Clin Nutr. 2018;72(2):207–19. doi: 10.1038/s41430-017-0004-y

Vergnaud AC, Norat T, Mouw T, Romaguera D, May AM, Bueno-de-Mesquita HB, et al. Macronutrient composition of the diet and prospective weight change in participants of the EPIC-PANACEA study. PLoS One. 2013;8(3):e57300. doi: 10.1371/journal.pone.0057300

Berryman CE, Agarwal S, Lieberman HR, Fulgoni VL, Pasiakos SM. Diets higher in animal and plant protein are associated with lower adiposity and do not impair kidney function in US adults. Am J Clin Nutr. 2016;104(3):743–9. doi: 10.3945/ajcn.116.133819

Cuenca-Sanchez M, Navas-Carrillo D, Orenes-Pinero E. Controversies surrounding high-protein diet intake: satiating effect and kidney and bone health. Adv Nutr. 2015;6(3):260–6. doi: https://doi.org/10.3945/an.114.007716

Pasiakos SM, Lieberman HR, Fulgoni VL. Higher-protein diets are associated with higher HDL cholesterol and lower BMI and waist circumference in US adults. J Nutr. 2015;145(3):605–14. doi: https://doi.org/10.3945/jn.114.205203

Song SJ, Song WO, Song YJ. Dietary carbohydrate and fat intakes are differentially associated with lipid abnormalities in Korean adults. J Clin Lipidol. 2017;11(2):338–347. doi: http://dx.doi.org/10.1016/j.jacl.2017.01.016

Schwingshackl L, Hoffmann G. Comparison of effects of long-term low-fat vs high-fat diets on blood lipid levels in overweight or obese patients: a systematic review and meta-analysis. J Acad Nutr Diet. 2013;113(12):1640–61. doi: http://dx.doi.org/10.1016/j.jand.2013.07.010

Anagnostis P, Paschou SA, Goulis DG, Athyros VG, Karagiannis A. Dietary management of dyslipidaemias. Is there any evidence for cardiovascular benefit? Maturitas. 2018;108:45–52. doi: https://doi.org/10.1016/j.maturitas.2017.11.011

Quintanilla-Cantú A, Peña-de-la-Sancha P, Flores-Castillo C, Mejía-Domínguez AM, Posadas-Sánchez R, Pérez-Hernández N, et al. Small HDL subclasses become cholesterol-poor during postprandial period after a fat diet intake in subjects with high triglyceridemia increases. Clin Chim Acta. 2017;464:98–105. doi: http://dx.doi.org/10.1016/j.cca.2016.11.018

Publicado

2020-12-31

Cómo citar

1.
Ana Gabriella Pereira Alves, Carvalho Cruvinel BA, Sebastiana Silva M, Silva Rebelo AC. Asociación entre ingesta alimentaria y perfil antropométrico y metabólico de mujeres adultas brasileñas. Rev Cient Cien Med [Internet]. 31 de diciembre de 2020 [citado 1 de marzo de 2021];23(2):136-53. Disponible en: http://rccm-umss.com/index.php/revistacientificacienciamedica/article/view/267