Estudio anatómico del hipocampo como una de las regiones de neurogénesis más relevante

Circuito hipocampal en el proceso de integración neuronal.

Autores/as

DOI:

https://doi.org/10.51581/rccm.v23i2.254

Palabras clave:

Hipocampo, Células madre, Neurogénesis

Resumen

Los avances tecnológicos en el campo de la medicina regenerativa han abierto un sin fin de posibilidades terapéuticas, que hace algún tiempo hubiera sido imposible de concebir. Dichos avances se han enfocado en el estudio regenerativo de células propias del Sistema Nervioso Central (SNC), gracias a la identificación plena de las funciones de las Células Madre Neurales (CMNs) y de ciertos marcadores neurogliales que intervienen en la formación de células troncales neuronales, originando no solo astrocitos, sino también neuronas, oligodendrocitos y células ependimarias. Teniendo en cuenta estos aspectos, la presente revisión bibliográfica se centra en el estudio anatómico de la zona del hipocampo como una de las regiones génicas más importantes e interesantes. Su papel fundamental es la formación de “nichos neurogénicos”, lugar donde se producen los procesos de diferenciación y formación de nuevas neuronas a partir de células troncales presentes durante toda la vida.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Msc. Vladimir Camacho Ugarte, Docente USFX

Doctorante en Ciencias Biomédicas. Docente Anatomía Humana Facultad de Ciencias Tecnológicas de la Salud. Universidad Mayor Real y Pontifice de San Francisco Xavier de Chuquisaca.

Dra. Agatha Bastida Codina

PhD, Científico Titular. Instituto de Química Orgánica General, IQOG, CSIC. 28006-Madrid-España.

Dra. Sandra Giovana Zarate

Universidad Mayor Real y Pontifice de San Francisco Xavier de Chuquisaca. Facultad de Tecnología. Carrera de Ingeniería Química. Sucre-Bolivia.

Citas

Thompson DM., Koppes AN., Hardy JG., Schidt CE. Eslectrical stimuli in the central nervous system microenvironment. Ann Rev Biomed Eng. 2014; 16, 397-430. Disponible en: doi: 10.1146/annurev-bioeng-121813-120655

Mateos-Aparicio P. Rodriguez-Moreno A. The impact of studying brain plasticity. Front. Cell. Neurosci., 2019; 13,66. Disponible en: doi.org/10.3389/fncel.2019.00066

Haladaj R. Anatomical variations of the dentate gyrus in normal adult brain. Surg Radiol Anat. 2020; 42(2),193-199. Disponible en: doi: 10.1007/s00276-019-02298-5

Gordon P. Animal models and the question of adult neurogenesis. Taconic. 2019; 21. Disponible en: https://www.taconic.com/taconic-insights/neuroscience/neurogenesis-animal-models.html#

Bernier P.J., Bedard A., Vinet J., Levesque M. Parent, A. Newly generated neurons in the amígdala and adjoining cortex of adult primates. Proceedings of the National Academy of Sciences USA, 2001; 99: 11464–11469. Disponible en: https://pubmed.ncbi.nlm.nih.gov/12177450-newly-generated-neurons-in-the-amygdala-and-adjoining-cortex-of-adult-primates/

Martinez-Cerdeño V. Stephen C. Noctor S. C. Neuronal progenitor cell terminology. Front. Neuroanat.; 2018,6. Disponible en: https://doi.org/10.3389/fnana.2018.00104

Dayer A.G., Cleaver K.M., Abou Antoun T. Cameron H.A. New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. Journal of Cell Biology, 2005; 168: 415–427. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15684031-new-gabaergic-interneurons-in-the-adult-neocortex-and-striatum-are-generated-from-different-precursors/

Cameron H.A. Dayer A.G. New interneurons in the adult neocortex: small, sparse, but significant? Biological Psychiatry, 2008; 63: 650-655. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2423203/

Feliciano D.M. Bordey A. Newborn cortical neurons: only for neonates?. Trends in Neurosciences. 2013; 36, 51–61. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23062965-newborn-cortical-neurons-only-for-neonates/

Yuan T-F., Liang Y-X., So, K-F. Occurrence of new neurons in the piriform cortex. Frontiers in Neuroanatomy, 2015; 8:167.Disponible en: https://www.frontiersin.org/articles/10.3389/fnana.2014.00167/full

Suhonen J.O., Peterson D.A., Ray J. Gage F.H. Differentiation of adult hippocampus derived progenitors into olfactory neurons in vivo. Nature, 1996; 383:624-627.Disponible en: https://pubmed.ncbi.nlm.nih.gov/8857538-differentiation-of-adult-hippocampus-derived-progenitors-into-olfactory-neurons-in-vivo/

Ming G.L. Song H. Adult neurogenesis in the mammalian central nervous system. Annual Review of Neuroscience, 2005; 28:223-250.Disponible en: https://pubmed.ncbi.nlm.nih.gov/16022595-adult-neurogenesis-in-the-mammalian-central-nervous-system/

Gross C.G. Neurogenesis in the adult brain: Death of a dogma. Nature Reviews Neuroscience, 2000; 1:67-73. Disponible en: https://pubmed.ncbi.nlm.nih.gov/11252770-neurogenesis-in-the-adult-brain-death-of-a-dogma/

Altman J. Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anatomical Record, 1963; 145: 573-591.Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/ar.1091450409

Altman J. Autoradiographic and histological studies of postnatal neurogenesis, IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. Journal of Comparative Neurology, 1969; 137(4): 433-457. Disponible en: https://pubmed.ncbi.nlm.nih.gov/5361244-autoradiographic-and-histological-studies-of-postnatal-neurogenesis-iv-cell-proliferation-and-migration-in-the-anterior-forebrain-with-special-reference-to-persisting-neurogenesis-in-the-olfactory-bulb/

Goldman S.A. Nottebohm F. Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc. Natl. Acad. Sci. U. S. A 1983; 80, 2390-2394. Disponible en: https://pubmed.ncbi.nlm.nih.gov/6572982-neuronal-production-migration-and-differentiation-in-a-vocal-control-nucleus-of-the-adult-female-canary-brain/

Paton J.A. Nottebohm F.N. Neurons generated in the adult brain are recruited into functional circuits. Science 1984; 225, 1046-1048. Disponible en: https://pubmed.ncbi.nlm.nih.gov/6474166/ doi: 10.1126/science.6474166.

Reynolds B. A. Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 1992; 255 (5052): 1707-1710. Disponible en: https://pubmed.ncbi.nlm.nih.gov/6474166-neurons-generated-in-the-adult-brain-are-recruited-into-functional-circuits/

Rakic P.Limits of neurogenesis in primates. Science 1985; 227, 1054-1056. Disponible en: https://pubmed.ncbi.nlm.nih.gov/3975601-limits-of-neurogenesis-in-primates/

Gage F.H. Mammalian neural stem cells. Science 2000; 287: 1433-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/10688783-mammalian-neural-stem-cells/

Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4: 1313-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9809557-neurogenesis-in-the-adult-human-hippocampus/

Arias-Carrión O, Olivares-Bañuelos T, Drucker-Colín R. Neurogénesis en el cerebro adulto. Rev Neurol 2007; 44: 541-550. Disponible en: https://ginde.webs.ull.es/wp-content/uploads/2013/06/neurogenesis.pdf

Abrous DN, Koehl M, Le Moal M. Adult neurogenesis: from precursors to network and physiology. Physiol Rev 2005; 85: 523-569. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15788705-adult-neurogenesis-from-precursors-to-network-and-physiology/.

Ghosh H.S. Adult Neurogenesis and the Promise of adult neural stem cells. J. Exp Neurosci. 2019; 13:1-12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600486/

Palmer T.D., Willhoite A.R. Gage, F.H. Vascular niche for adult hippocampal neurogenesis. Journal of Comparative Neurology, 2000; 425: 479–494. Disponible en: https://pubmed.ncbi.nlm.nih.gov/10975875-vascular-niche-for-adult-hippocampal-neurogenesis/

Peng L. Bonaguidi M.A. Function and dysfunction of Aduct hippocampal Neurogenesis in Regeneration and Disease. The American Journal of Pathology, 2018; 188 (1): 23-28. Disponible en: https://www.sciencedirect.com/science/article/pii/S0002944017305916

Ihn Han B-S K, Hun-Kuk Park K S K. Differentiation Potential of Mesenchymal Stem Cells Is Related to Their Intrinsic Mechanical Properties. Int Neurourol J. 2017; 21: S24-31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426435/

Ni F, Yu WM, Wang X, Fay ME, Young KM, Qiu Y, et al.. Ptpn21 Controls Hematopoietic Stem Cell Homeostasis and Biomechanics. Cell Stem Cell. 2019; 424(4):608-620.e6. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30880025-ptpn21-controls-hematopoietic-stem-cell-homeostasis-and-biomechanics/

Dulak J, Szade K, Nowak W, Jozkowicz A.Adult stem cells: hopes and hypes of regenerative medicine. Acta Biochim Pol. 2015; 62(3):329-337. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26200199-adult-stem-cells-hopes-and-hypes-of-regenerative-medicine/

Zhao C., Teng E.M., Summers R.G. Jr., Ming G.L. Gage, F.H. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. Journal of Neuroscience, 2006; 26(1): 3-11. Disponible en: https://pubmed.ncbi.nlm.nih.gov/16399667-distinct-morphological-stages-of-dentate-granule-neuron-maturation-in-the-adult-mouse-hippocampus/

Toni N., Laplagne D.A., Zhao C., Lombardi G., Ribak C.E., Gage F.H. Schinder, A.F. Neurons born in the adult dentate gyrus from functional synapses with target cells. Nature Neuroscience, 2008; 11(8):901-907. Disponible en: https://pubmed.ncbi.nlm.nih.gov/18622400-neurons-born-in-the-adult-dentate-gyrus-form-functional-synapses-with-target-cells/

Altman J. Are new neurons formed in the brains of adult mammals? Science, 1962a; 135(3509): 1127-1128. Disponible en: https://pubmed.ncbi.nlm.nih.gov/13860748-are-new-neurons-formed-in-the-brains-of-adult-mammals/

Altman J. Autoradiographic study of degenerative and regenerative proliferation of neuroglia cells with tritiated thymidine. Experimental Neurology, 1962b; 5: 302-318. Disponible en: https://www.sciencedirect.com/science/article/pii/0014488662900407

Forster E., Zhao S. Frotscher, M. Laminating the hippocampus. Nature Reviews Neuroscience, 2006; 7:259-267. Disponible en: https://pubmed.ncbi.nlm.nih.gov/16543914-laminating-the-hippocampus/

Amaral D.G. Witter M.P. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience, 1989; 31:571-591.Disponible en: https://pubmed.ncbi.nlm.nih.gov/2687721-the-three-dimensional-organization-of-the-hippocampal-formation-a-review-of-anatomical-data/

Suárez I. Papel de la Neurogénesis hipocampal adulta en los procesos cognitivos que dependen del hipocampo. Tesis, Universidad de Olavide, Sevilla 2015, España.

Strange B.A., Witter M.P., Lein E.S. Moser E.I. Functional organization of the hippocampal longitudinal axis. Nature Reviews Neuroscience, 2014; 15(10):655-569. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25234264-functional-organization-of-the-hippocampal-longitudinal-axis/

Seri B., García-Verdugo J.M., McEwen B.S. Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. Journal of Neuroscience, 2001;21 (18): 7153-7160. Disponible en: https://pubmed.ncbi.nlm.nih.gov/11549726-astrocytes-give-rise-to-new-neurons-in-the-adult-mammalian-hippocampus/

Ge SY, Pradhan DA, Ming GL, Song HJ. GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neuroscience 2007; 30, 1-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/17116335-gaba-sets-the-tempo-for-activity-dependent-adult-neurogenesis/

Zhao C., Deng, W., Gage F.H. Mechanisms and functional implications of adult neurogenesis. Cell, 2008a; 132:645–660.Disponible en: https://pubmed.ncbi.nlm.nih.gov/18295581-mechanisms-and-functional-implications-of-adult-neurogenesis/

Lin JH, Takano T, Arcuino G, Wang X, Hu F, Darzynkiewicz Z, Nunes M, Goldman SA, Nedergaard M. Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev Biol 2007; 302, 356-366.Disponible en: https://pubmed.ncbi.nlm.nih.gov/17188262-purinergic-signaling-regulates-neural-progenitor-cell-expansion-and-neurogenesis/

Moreno-López B, Romero-Grimaldi C, Noval JA, Murillo-Carretero M, Matarredona ER, Estrada C. Nitric Oxide Is a Physiological Inhibitor of Neurogenesis in the Adult Mouse Subventricular Zone and Olfactory Bulb. J Neurosci. 2004; 24:85-95. Disponible en: https://pubmed.ncbi.nlm.nih.gov/14715941-nitric-oxide-is-a-physiological-inhibitor-of-neurogenesis-in-the-adult-mouse-subventricular-zone-and-olfactory-bulb/

Bauer S, Kerr BJ, Patterson PH. The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci 2007; 8, 221-232.Disponible en: https://pubmed.ncbi.nlm.nih.gov/17311007-the-neuropoietic-cytokine-family-in-development-plasticity-disease-and-injury/

Kuhn H.G. Toda T. Gage F.H. Adult hippocampal Neurogenesis: A coming-of-Age-Story. Journal of Neuroscience, 2018; 38 (49): 10401-10410. Disponible en: https://www.jneurosci.org/content/38/49/10401

Espósito M.S., Piatti V.C., Laplagne D.A., Morgenstern N.A., Ferrari C.C., Pitossi F.J. Schinder A.F. Neuronal differentiation in the adult hippocampus recapitulates embryonic development. Journal of Neuroscience, 2005; 25(44): 10074-10086.Disponible en: https://www.jneurosci.org/content/25/44/10074

Vivar C, van Praag H. Functional circuits of new neurons in the dentate gyrus. Frontiers of Neural Circuits, 2013; 7-15. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23443839-functional-circuits-of-new-neurons-in-the-dentate-gyrus/

Tozuka Y., Fukuda S., Namba T., Seki T. Hisatsune, T. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron, 2005: 47: 803–815.Disponible en: https://pubmed.ncbi.nlm.nih.gov/16157276-gabaergic-excitation-promotes-neuronal-differentiation-in-adult-hippocampal-progenitor-cells/

Wang L.P., Kempermann G. Kettenmann H. A subpopulation of precursor cells in the mouse dentate gyrus receives synaptic GABAergic input. Molecular and Cellular Neuroscience, 2005; 29(2): 181-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15911343-a-subpopulation-of-precursor-cells-in-the-mouse-dentate-gyrus-receives-synaptic-gabaergic-input/

Walker M.C. Semyanov, A. Regulation of excitability by extrasynaptic GABA (A) receptors. Results and Problems in Cell Differentiation, 2008; 44: 29–48. Disponible en: https://pubmed.ncbi.nlm.nih.gov/17671772-regulation-of-excitability-by-extrasynaptic-gabaa-receptors/

Chancey J.H., Adlaf E.W., Sapp M.C., Pugh P.C., Wadiche J.I. Overstreet-Wadiche L.S. GABA depolarization is required for experience dependent synapse unsilencing in adult-born neurons. Journal of Neuroscience, 2013; 33(15):6614-22. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23575858-gaba-depolarization-is-required-for-experience-dependent-synapse-unsilencing-in-adult-born-neurons/

Toda T., Gage F.H. Review: adult neurogenesis contributes to hippocampal plasticity. Cell and Tissue Research, 2018, 373:693–709.Disponible en: https://pubmed.ncbi.nlm.nih.gov/29185071-review-adult-neurogenesis-contributes-to-hippocampal-plasticity/

Zhu Y. Gao H. Tong L. Li Z. Wang L. Zhang C. Yang Q. Yan B. Emotion regulation of Hyppocampus Using Real-Time fMRI Neurofeedback in Healthy Human. Front. Hum. Neurosci. 2019; 16. Disponible en:https://www.frontiersin.org/articles/10.3389/fnhum.2019.00242/full

Li Y., Aimone J.B., Xu X., Callaway E.M. Gage F.H. Development of GABAergic inputs controls the contribution of maturing neurons to the adult hippocampal network. Proceedings of the National Academy of Sciences USA, 2012; 109: 4290-4295.Disponible en: https://www.pnas.org/content/109/11/4290

Drucker-Colín R. Verdugo-Díaz L. Cell transplantation for Parkinson’s disease: present status. Cell Mol Neurobiol 2004; 24:301-316.Disponible en: https://pubmed.ncbi.nlm.nih.gov/15206816-cell-transplantation-for-parkinsons-disease-present-status/

Rodriguez-jimenez F.J. Clemente E. Moreno-Manzano V. Erceg S. Organized Neurogenic-Niche-Like Pinwheel Structures Discovered in Spinal Cord Tissue-Derived Neurospheres. Front. Cell Dev. Biol. 2019; 20. Disponible en: https://www.frontiersin.org/articles/10.3389/fcell.2019.00334/full

Noisa P. Raivio T. Cui W. Neural Progenitor Cells derived from human Embryonic Stem Cells as an Origin of Dopaminergic Neurons. Stem Cells International. 2015; 1-10. Disponible en: https://www.hindawi.com/journals/sci/2015/647437/

Deng W., Aimone J.B. Gage, F.H. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nature Review Neuroscience, 2010; 11(5): 339-350.Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886712/

Cotman CW, Nieto-Sampedro M H. EW. Synapse replacement in the nervous system of adult vertebrates. Physiol. Rev. 1981; 61: 684-784.Disponible en: https://pubmed.ncbi.nlm.nih.gov/7019944-synapse-replacement-in-the-nervous-system-of-adult-vertebrates/

Seki T. Hori T. Muyata H. Maehara M. Namba T. Analysis of proliferating neuronal progenitors and inmatyre neurons in the humen hippocampus surgically removed from control and epileptic patiens. Scientific Reports 2019; 9: 14194. Disponible en: https://www.nature.com/articles/s41598-019-54684-z

Coronel R. Lachgar M. Bernabeu-Zornoza A. Palmer C. Domínguez-Alvaro M. Revilla A. Ocaña I. Fernández A. Martínez-Serrano A. Cano E. Liste I. Neuronal and Glial Differentiation of Human Neural Stem Cells Is Regulated by Amyloid Precursor Protein (APP) Levels. Mol Neurobiol 2019; 56(2):1248-1261. https://www.ncbi.nlm.nih.gov/pubmed/29881946

Publicado

2020-12-31

Cómo citar

1.
Camacho Ugarte MV, Bastida Codina DA, Giovana Zarate DS. Estudio anatómico del hipocampo como una de las regiones de neurogénesis más relevante: Circuito hipocampal en el proceso de integración neuronal. Rev Cient Cien Med [Internet]. 31 de diciembre de 2020 [citado 27 de julio de 2021];23(2):221-30. Disponible en: https://rccm-umss.com/index.php/revistacientificacienciamedica/article/view/254

Número

Sección

Artículos de Revision